Advertisements
Advertisements
Question
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
Solution
\[\text{We have}, \]
\[ \int_0^1 \left( 3 x^2 + 2x + k \right) d x = 0\]
\[ \Rightarrow \left[ x^3 + x^2 + kx \right]_0^1 = 0\]
\[ \Rightarrow 1 + 1 + k - 0 = 0\]
\[ \Rightarrow k = - 2\]
APPEARS IN
RELATED QUESTIONS
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
If n > 0, then Γ(n) is
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`