Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\frac{\pi}{2} \frac{1}{5 \cos x + 3 \sin x} d\ x . Then, \]
\[I = \int_0^\frac{\pi}{2} \frac{1}{5\left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) + 3\left( \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)} d\ x \left[ \because \sin A = \left( \frac{2 \tan \frac{A}{2}}{1 + \tan^2 \frac{A}{2}} \right), \cos A = \left( \frac{1 - \tan^2 \frac{A}{2}}{1 + \tan^2 \frac{A}{2}} \right) \right]\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{1 + \tan^2 \frac{x}{2}}{5 - 5 \tan^2 \frac{x}{2} + 6 \tan \frac{x}{2}} dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\sec^2 \frac{x}{2}}{5 - 5 \tan^2 \frac{x}{2} + 6 \tan \frac{x}{2}} dx\]
\[Let \tan \frac{x}{2} = t . Then, \frac{1}{2} \sec^2 \frac{x}{2} dx = dt\]
\[Also, x = 0, t = 0 and x = \frac{\pi}{2}, t = 1\]
\[ \therefore I = \int_0^1 \frac{2dt}{5 - 5 t^2 + 6t}\]
\[ \Rightarrow I = \frac{1}{5} \int_0^1 \frac{2dt}{1 - t^2 + \frac{6}{5}t + \frac{36}{100} - \frac{36}{100}}\]
\[ = \frac{2}{5} \int_0^1 \frac{dt}{- \left( t - \frac{6}{10} \right)^2 + \frac{136}{100}}\]
\[ = \frac{2}{5} \times \frac{10}{\sqrt{136}} \left[ - \log \left( \frac{t - \frac{6}{10} - \frac{\sqrt{136}}{10}}{t - \frac{6}{10} + \frac{\sqrt{136}}{10}} \right) \right]_0^1 \]
\[ = \frac{1}{\sqrt{34}}\left[ - \log \left( \frac{4 - 2\sqrt{34}}{4 + 2\sqrt{34}} \right) + \log \left( \frac{- 6 - 2\sqrt{34}}{- 6 + 2\sqrt{34}} \right) \right]\]
\[ = \frac{1}{\sqrt{34}} \log \left( \frac{6 + 2\sqrt{34}}{6 - 2\sqrt{34}} \times \frac{4 + 2\sqrt{34}}{4 - 2\sqrt{34}} \right)\]
\[ = \frac{1}{\sqrt{34}} \log \left( \frac{160 + 20\sqrt{34}}{160 - 20\sqrt{34}} \right)\]
\[ = \frac{1}{\sqrt{34}} \log \left( \frac{8 + \sqrt{34}}{8 - \sqrt{34}} \right)\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals:
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.