Advertisements
Advertisements
Question
Solution
Let
\[ = \int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{4 - \left( \sin^2 x + \cos^2 x - 2\sin x\cos x \right)}dx\]
\[ = \int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{4 - \left( \sin x - \cos x \right)^2}dx\]
Put
\[ = \left.\frac{1}{2 \times 2}\log\left( \frac{2 + z}{2 - z} \right)\right|_{- 1}^0 \]
\[ = \frac{1}{4}\left( \log1 - \log\frac{1}{3} \right)\]
\[ = \frac{1}{4}\left[ 0 - \left( \log1 - \log3 \right) \right]\]
\[ = - \frac{1}{4}\left( 0 - \log3 \right)\]
\[ = \frac{1}{4}\log3\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Evaluate each of the following integral:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
`int_0^(2a)f(x)dx`
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.