Advertisements
Advertisements
Question
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
Options
- \[\frac{\pi^2}{4}\]
- \[\frac{\pi^2}{2}\]
- \[\frac{3 \pi^2}{2}\]
\[\frac{\pi^2}{3}\]
Solution
\[ I = \int_0^\pi \frac{x \tan x}{\sec x + \cos x} d x ..................(1)\]
\[ = \int_0^\pi \frac{\left( \pi - x \right)\tan\left( \pi - x \right)}{\sec\left( \pi - x \right) + \cos\left( \pi - x \right)} d x\]
\[ = \int_0^\pi \frac{\left( \pi - x \right)tanx}{\sec x + \cos x} dx .......................(2)\]
Adding (1) and (2), we get
\[2I = \int_0^\pi \left[ \frac{x\tan x}{\sec x + \cos x} + \frac{\left( \pi - x \right)tan x}{\sec x + \cos x} \right] d x\]
\[ \Rightarrow I = \frac{1}{2} \int_0^\pi \frac{\pi \tan x}{\sec x + \cos x}dx\]
\[ = \frac{\pi}{2} \int_0^\pi \frac{sin x}{1 + \cos^2 x} dx\]
\[\text{Putting} \cos x = t\]
\[ \Rightarrow - \sin x dx = dt\]
\[ \Rightarrow \sin x dx = - dt\]
\[When\ x \to 0; t \to 1\]
\[and\ x \to \pi; t \to - 1\]
\[ \Rightarrow I = \frac{\pi}{2} \int_1^{- 1} \frac{- dt}{1 + t^2}\]
\[ = \frac{\pi}{2} \int_{- 1}^1 \frac{dt}{1 + t^2}\]
\[ = \frac{\pi}{2} \left[ \tan^{- 1} t \right]_{- 1}^1 \]
\[ = \frac{\pi}{2}\left[ \tan^{- 1} \left( 1 \right) - \tan^{- 1} \left( - 1 \right) \right]\]
\[ = \frac{\pi}{2}\left[ \frac{\pi}{4} - \left( - \frac{\pi}{4} \right) \right]\]
\[ = \frac{\pi}{2} \times \frac{\pi}{2} = \frac{\pi^2}{4}\]
\[Hence\ I = \frac{\pi^2}{4}\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Evaluate each of the following integral:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is