Advertisements
Advertisements
Question
Solution
\[Let I = \int_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} d x . Then, \]
\[I = \int_0^1 \left( \frac{1}{\sqrt{1 + x} - \sqrt{x}} \times \frac{\sqrt{1 + x} + \sqrt{x}}{\sqrt{1 + x} + \sqrt{x}} \right) d x\]
\[ \Rightarrow I = \int_0^1 \frac{\sqrt{1 + x} + \sqrt{x}}{1 + x - x} d x\]
\[ \Rightarrow I = \int_0^1 \left( \sqrt{1 + x} + \sqrt{x} \right) dx\]
\[ \Rightarrow I = \left[ \frac{2}{3} \left( 1 + x \right)^\frac{3}{2} + \frac{2}{3} x^\frac{3}{2} \right]_0^1 \]
\[ \Rightarrow I = \frac{2}{3} \times 2\sqrt{2} + \frac{2}{3} - \frac{2}{3}\]
\[ \Rightarrow I = \frac{4\sqrt{2}}{3}\]
APPEARS IN
RELATED QUESTIONS
If f(x) is a continuous function defined on [−a, a], then prove that
Evaluate each of the following integral:
Solve each of the following integral:
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.