Advertisements
Advertisements
Question
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
Solution
\[\int_0^\pi \cos2x \log\sin x d x\]
\[ = \left[ \log\sin x \frac{\sin2x}{2} \right]_0^\pi - \int_0^\pi \frac{\cos x}{\sin x}\frac{\sin2x}{2} dx\]
\[ = \left[ \log\sin x \frac{\sin2x}{2} \right]_0^\pi - \int_0^\pi \cos^2 x dx\]
\[ = \left[ \log\sin x \frac{\sin2x}{2} \right]_0^\pi - \int_0^\pi \frac{1 + \cos2x}{2}dx\]
\[ = \left[ \log\sin x \frac{\sin2x}{2} \right]_0^\pi - \frac{1}{2} \left[ x + \frac{\sin2x}{2} \right]_0^\pi \]
\[ = 0 - \frac{1}{2}\left( \pi + 0 \right)\]
\[ = - \frac{\pi}{2}\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate :
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.