Advertisements
Advertisements
Question
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
Solution
\[Let, I = \int_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} d x ...............(1)\]
\[ = \int_0^a \frac{\sqrt{a - x}}{\sqrt{a - x} + \sqrt{a - a + x}} d x\]
\[ = \int_0^a \frac{\sqrt{a - x}}{\sqrt{a - x} + \sqrt{x}} d x\]
\[ \Rightarrow I = \int_0^a \frac{\sqrt{a - x}}{\sqrt{x} + \sqrt{a - x}} d x.................(2)\]
Adding (1) and (2)
\[2I = \int_0^a \left[ \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} + \frac{\sqrt{a - x}}{\sqrt{x} + \sqrt{a - x}} \right] d x\]
\[ = \int_0^a dx\]
\[ = \left[ x \right]_0^a \]
\[ = a\]
\[\text{Hence, }I = \frac{a}{2}\]
APPEARS IN
RELATED QUESTIONS
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
\[\int\limits_2^3 e^{- x} dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.