English

1 ∫ 0 1 2 X 2 + X + 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]

Solution

\[Let\ I = \int_0^1 \frac{1}{2 x^2 + x + 1} d\ x . Then, \]
\[I = \frac{1}{2} \int_0^1 \frac{1}{x^2 + \frac{x}{2} + \frac{1}{2}} d x\]
\[I = \frac{1}{2} \int_0^1 \frac{1}{\left( x^2 + \frac{x}{2} + \frac{1}{16} \right) - \frac{1}{16} + \frac{1}{2}} d\ x\]
\[ \Rightarrow I = \frac{1}{2} \int_0^1 \frac{1}{\left( x + \frac{1}{4} \right)^2 + \frac{7}{16}} dx\]
\[ \Rightarrow I = \frac{1}{2} \times \frac{4}{\sqrt{7}} \left[ \tan^{- 1} \left( \frac{x + \frac{1}{4}}{\frac{\sqrt{7}}{4}} \right) \right]_0^1 \]
\[ \Rightarrow I = \frac{2}{\sqrt{7}}\left( \tan^{- 1} \frac{5}{\sqrt{7}} - \tan^{- 1} \frac{1}{\sqrt{7}} \right)\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.1 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.1 | Q 40 | Page 17

RELATED QUESTIONS

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 


\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int\limits_0^\pi \left( \sin^2 \frac{x}{2} - \cos^2 \frac{x}{2} \right) dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 


\[\int_0^2 2x\left[ x \right]dx\]

If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


\[\int\limits_a^b e^x dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]


\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


Find `int sqrt(10 - 4x + 4x^2)  "d"x`


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×