Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^1 \frac{1}{2 x^2 + x + 1} d\ x . Then, \]
\[I = \frac{1}{2} \int_0^1 \frac{1}{x^2 + \frac{x}{2} + \frac{1}{2}} d x\]
\[I = \frac{1}{2} \int_0^1 \frac{1}{\left( x^2 + \frac{x}{2} + \frac{1}{16} \right) - \frac{1}{16} + \frac{1}{2}} d\ x\]
\[ \Rightarrow I = \frac{1}{2} \int_0^1 \frac{1}{\left( x + \frac{1}{4} \right)^2 + \frac{7}{16}} dx\]
\[ \Rightarrow I = \frac{1}{2} \times \frac{4}{\sqrt{7}} \left[ \tan^{- 1} \left( \frac{x + \frac{1}{4}}{\frac{\sqrt{7}}{4}} \right) \right]_0^1 \]
\[ \Rightarrow I = \frac{2}{\sqrt{7}}\left( \tan^{- 1} \frac{5}{\sqrt{7}} - \tan^{- 1} \frac{1}{\sqrt{7}} \right)\]
APPEARS IN
RELATED QUESTIONS
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.