English

∫ 2 − 1 ( | X + 1 | + | X | + | X − 1 | ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 

Sum

Solution

We know that

\[\left| x + 1 \right| = \begin{cases}x + 1, & \text{if }x + 1 \geq 0 \\ - \left( x + 1 \right), & \text{if }x + 1 < 0\end{cases} = \begin{cases}x + 1, & \text{if }x \geq - 1 \\ - \left( x + 1 \right), & \text{if }x < - 1\end{cases}\]

\[\left| x \right| = \begin{cases}x, & \text{if }x \geq 0 \\ - x, & \text{if }x < 0\end{cases}\]

\[\left| x - 1 \right| = \begin{cases}x - 1, & \text{if }x - 1 \geq 0 \\ - \left( x - 1 \right), & \text{if }x - 1 < 0\end{cases} = \begin{cases}x - 1, & \text{if }x \geq 1 \\ - \left( x - 1 \right), & \text{if }x < 1\end{cases}\]

When

\[- 1 \leq x \leq 0,\]
\[\left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| = x + 1 + \left( - x \right) + \left[ - \left( x - 1 \right) \right] = 2 - x\]

When

\[0 \leq x \leq 1,\]
\[\left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| = x + 1 + x + \left[ - \left( x - 1 \right) \right] = x + 2\]

When

\[1 \leq x \leq 2,\]
\[\left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| = x + 1 + x + x - 1 = 3x\]

\[\therefore \int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]
\[ = \int_{- 1}^0 \left( 2 - x \right)dx + \int_0^1 \left( x + 2 \right)dx + \int_1^2 3xdx\]
\[ = \left.\frac{\left( 2 - x \right)^2}{2 \times \left( - 1 \right)}\right|_{- 1}^0 + \left.\frac{\left( x + 2 \right)^2}{2}\right|_0^1 + \left.3 \times \frac{x^2}{2}\right|_1^2 \]
\[ = - \frac{1}{2}\left( 4 - 9 \right) + \frac{1}{2}\left( 9 - 4 \right) + \frac{3}{2}\left( 4 - 1 \right)\]
\[ = \frac{5}{2} + \frac{5}{2} + \frac{9}{2}\]
\[ = \frac{19}{2}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.3 [Page 56]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.3 | Q 20 | Page 56

RELATED QUESTIONS

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\limits_0^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_0^\pi 5 \left( 5 - 4 \cos \theta \right)^{1/4} \sin \theta\ d \theta\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]


\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 


\[\int_0^\pi \cos x\left| \cos x \right|dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

\[\int\limits_1^3 \left( 3x - 2 \right) dx\]

\[\int\limits_1^2 x^2 dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_0^2 \left( x^2 - x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 


\[\int\limits_0^1 \tan^{- 1} x dx\]


\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Evaluate the following:

Γ(4)


Choose the correct alternative:

Γ(1) is


Choose the correct alternative:

`Γ(3/2)`


Find `int x^2/(x^4 + 3x^2 + 2) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×