English

2 ∫ 1 X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_1^2 x^2 dx\]
Sum

Solution

\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]
\[\text{where }h = \frac{b - a}{n}\]

\[\text{Here }a = 1, b = 2, f\left( x \right) = x^2 , h = \frac{2 - 1}{n} = \frac{1}{n}\]
Therefore,
\[I = \int_1^2 \left( x^2 \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 1 \right) + f\left( 1 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left( 1 + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 1 \right) + \left( h + 1 \right)^2 + . . . . . . . . . . . . . . . + \left( \left( n - 1 \right)h + 1 \right)^2 \right]\]
\[ = \lim_{h \to 0} h\left[ n + h^2 \left\{ 1^2 + 2^2 + 3^2 . . . . . . . . . + \left( n - 1 \right)^2 \right\} + 2h\left\{ 1 + 2 + 3 + . . . . . . . . . . . + \left( n - 1 \right) \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ n + h^2 \frac{n\left( n - 1 \right)\left( 2n - 1 \right)}{6} + 2h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{1}{n}\left[ n + \frac{\left( n - 1 \right)\left( 2n - 1 \right)}{6n} + n - 1 \right]\]
\[ = \lim_{n \to \infty} \left\{ 2 + \frac{1}{6}\left( 1 - \frac{1}{n} \right)\left( 2 - \frac{1}{n} \right) - \frac{1}{n} \right\}\]
\[ = 2 + \frac{1}{3} = \frac{7}{3}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.6 [Page 110]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.6 | Q 9 | Page 110

RELATED QUESTIONS

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]


\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

\[\int\limits_a^b e^x dx\]

\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_0^2 \left( x^2 - x \right) dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals


\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_0^{\pi/4} \tan^4 x dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]


\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]


\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Evaluate the following using properties of definite integral:

`int_(- pi/4)^(pi/4) x^3 cos^3 x  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Choose the correct alternative:

Γ(n) is


Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×