Advertisements
Advertisements
Question
Solution
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here }a = 1, b = 2, f\left( x \right) = x^2 , h = \frac{2 - 1}{n} = \frac{1}{n}\]
Therefore,
\[I = \int_1^2 \left( x^2 \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 1 \right) + f\left( 1 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left( 1 + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 1 \right) + \left( h + 1 \right)^2 + . . . . . . . . . . . . . . . + \left( \left( n - 1 \right)h + 1 \right)^2 \right]\]
\[ = \lim_{h \to 0} h\left[ n + h^2 \left\{ 1^2 + 2^2 + 3^2 . . . . . . . . . + \left( n - 1 \right)^2 \right\} + 2h\left\{ 1 + 2 + 3 + . . . . . . . . . . . + \left( n - 1 \right) \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ n + h^2 \frac{n\left( n - 1 \right)\left( 2n - 1 \right)}{6} + 2h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{1}{n}\left[ n + \frac{\left( n - 1 \right)\left( 2n - 1 \right)}{6n} + n - 1 \right]\]
\[ = \lim_{n \to \infty} \left\{ 2 + \frac{1}{6}\left( 1 - \frac{1}{n} \right)\left( 2 - \frac{1}{n} \right) - \frac{1}{n} \right\}\]
\[ = 2 + \frac{1}{3} = \frac{7}{3}\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Prove that:
Evaluate each of the following integral:
Solve each of the following integral:
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
Γ(n) is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.