Advertisements
Advertisements
Question
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
Options
0
1/2
2
3/2
Solution
2
\[\int_0^\pi \frac{1}{1 + \sin x} d x\]
\[ = \int_0^\pi \frac{1}{1 + \sin x} \times \frac{1 - \sin x}{1 - \sin x}dx\]
\[ = \int_0^\pi \frac{1 - \sin x}{1 - \sin^2 x}dx\]
\[ = \int_0^\pi \frac{1 - \sin x}{\cos^2 x}dx\]
\[ = \int_0^\pi \left( se c^2 x - \sec x \tan x \right) dx\]
\[ = \left[ \tan x - sec x \right]_0^\pi \]
\[ = 0 + 1 - 0 + 1\]
\[ = 2\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Evaluate each of the following integral:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
`int x^3/(x + 1)` is equal to ______.