English

Π ∫ 0 1 1 + Sin X D X Equals(A) 0 (B) 1/2 (C) 2 (D) 3/2 - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals

Options

  • 0

  • 1/2

  • 2

  • 3/2

MCQ

Solution

2

 

\[\int_0^\pi \frac{1}{1 + \sin x} d x\]
\[ = \int_0^\pi \frac{1}{1 + \sin x} \times \frac{1 - \sin x}{1 - \sin x}dx\]
\[ = \int_0^\pi \frac{1 - \sin x}{1 - \sin^2 x}dx\]
\[ = \int_0^\pi \frac{1 - \sin x}{\cos^2 x}dx\]
\[ = \int_0^\pi \left( se c^2 x - \sec x \tan x \right) dx\]
\[ = \left[ \tan x - sec x \right]_0^\pi \]
\[ = 0 + 1 - 0 + 1\]
\[ = 2\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - MCQ [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
MCQ | Q 2 | Page 117

RELATED QUESTIONS

\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

Evaluate the following integral:

\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx\]

 


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 + x \right) dx\]

\[\int\limits_0^2 \left( x^2 - x \right) dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 - \cos 2x}\ dx .\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to

The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .


\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]


\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]


\[\int\limits_0^{15} \left[ x^2 \right] dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


Find `int x^2/(x^4 + 3x^2 + 2) "d"x`


If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.


`int x^3/(x + 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×