English

∫x3x+1 is equal to ______. - Mathematics

Advertisements
Advertisements

Question

`int x^3/(x + 1)` is equal to ______.

Options

  • `x + x^2/2 + x^3/3 - log|1 - x| + "C"`

  • `x + x^2/2 - x^3/3 - log|1 - x| + "C"`

  • `x - x^2/2 - x^3/3 - log|1 + x| + "C"`

  • `x - x^2/2 + x^3/3 - log|1 + x| + "C"`

MCQ
Fill in the Blanks

Solution

`int x^3/(x + 1)` is equal to `x - x^2/2 + x^3/3 - log|1 + x| + "C"`.

Explanation:

I = `int x^3/(x + 1)`

= `int (x^3 + 1 - 1)/(x + 1) "d"x`

= `int (x^3 + 1)/(x + 1) "d"x - int 1/(x + 1) "d"x`

= `int (x^2 - x + 1)"d"x - int 1/(x + 1) "d"x`

= `x^3/3 - x^2/2 + x - log|x + 1| + "C"`

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise [Page 168]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Exercise | Q 54 | Page 168

RELATED QUESTIONS

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]

\[\int\limits_{\pi/2}^\pi e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

If f(2a − x) = −f(x), prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 0 .\]

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_1^2 x^2 dx\]

\[\int\limits_0^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


\[\int\limits_0^{15} \left[ x \right] dx .\]

`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 

If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Find `int x^2/(x^4 + 3x^2 + 2) "d"x`


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×