Advertisements
Advertisements
Question
`int x^3/(x + 1)` is equal to ______.
Options
`x + x^2/2 + x^3/3 - log|1 - x| + "C"`
`x + x^2/2 - x^3/3 - log|1 - x| + "C"`
`x - x^2/2 - x^3/3 - log|1 + x| + "C"`
`x - x^2/2 + x^3/3 - log|1 + x| + "C"`
Solution
`int x^3/(x + 1)` is equal to `x - x^2/2 + x^3/3 - log|1 + x| + "C"`.
Explanation:
I = `int x^3/(x + 1)`
= `int (x^3 + 1 - 1)/(x + 1) "d"x`
= `int (x^3 + 1)/(x + 1) "d"x - int 1/(x + 1) "d"x`
= `int (x^2 - x + 1)"d"x - int 1/(x + 1) "d"x`
= `x^3/3 - x^2/2 + x - log|x + 1| + "C"`
APPEARS IN
RELATED QUESTIONS
If f(2a − x) = −f(x), prove that
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.