Advertisements
Advertisements
Question
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
Options
`1/(5x)(4 + 1/x^2)^-5 + "C"`
`1/5(4 + 1/x^2)^-5 + "C"`
`1/(10x)(1 + 4)^-5 + "C"`
`1/10(1/x^2 + 4)^-5 + "C"`
Solution
`int x^9/(4x^2 + 1)^6 "d"x` is equal to `1/10(1/x^2 + 4)^-5 + "C"`.
Explanation:
Let I = `int x^9/(4x^2 + 1)^6 "d"x`
= `int x^9/(x^12(4 + 1/x^2)^6) "d"x`
= `int 1/(x^3(4 + 1/x^2)^6) "d"x`
Put `(4 + 1/x^2)` = t
⇒ `(-2)/x^3 "dt"` = dt
⇒ `"dx"/x^3 = - 1/2 "dt"`
∴ I = `- 1/2 int "dt"/"t"^6`
= `- 1/2 xx - 1/5 "t"^-5 + "C"`
= `1/10 "t"^-5 + "C"`
= `1/10(4 + 1/x^2)^-5 + "C"`
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Evaluate the following integral:
Evaluate each of the following integral:
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
Choose the correct alternative:
If n > 0, then Γ(n) is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.