English

D∫x9(4x2+1)6 dx is equal to ______. - Mathematics

Advertisements
Advertisements

Question

`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.

Options

  • `1/(5x)(4 + 1/x^2)^-5 + "C"`

  • `1/5(4 + 1/x^2)^-5 + "C"`

  • `1/(10x)(1 + 4)^-5 + "C"`

  • `1/10(1/x^2 + 4)^-5 + "C"`

MCQ
Fill in the Blanks

Solution

`int x^9/(4x^2 + 1)^6  "d"x` is equal to `1/10(1/x^2 + 4)^-5 + "C"`.

Explanation:

Let I = `int x^9/(4x^2 + 1)^6 "d"x`

= `int  x^9/(x^12(4 + 1/x^2)^6) "d"x`

= `int 1/(x^3(4 + 1/x^2)^6) "d"x`

Put `(4 + 1/x^2)` = t

⇒ `(-2)/x^3 "dt"` = dt

⇒ `"dx"/x^3 = - 1/2 "dt"`

∴ I = `- 1/2 int "dt"/"t"^6`

= `- 1/2 xx - 1/5 "t"^-5 + "C"`

= `1/10 "t"^-5 + "C"`

= `1/10(4 + 1/x^2)^-5 + "C"`

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise [Page 167]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Exercise | Q 52 | Page 167

RELATED QUESTIONS

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]


\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_0^2 \left( x^2 + x \right) dx\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

 


\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 

The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 


\[\int\limits_0^4 x\sqrt{4 - x} dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


Choose the correct alternative:

If n > 0, then Γ(n) is


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×