Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_1^e \frac{e^x}{x}\left( 1 + x \log x \right)\ d\ x\ . Then, \]
\[I = \int_1^e \left( \frac{e^x}{x} + e^x \log x \right) dx\]
\[ \Rightarrow I = \int_1^e \frac{e^x}{x} dx + \int_1^e e^x \log x\ d\ x\]
\[\text{Integrating first term by parts}\]
\[ \Rightarrow I = \left[ \log x e^x \right]_1^e - \int_1^e e^x \log x d x + \int_1^e e^x \log\ x\ d\ x\]
\[ \Rightarrow I = \left( \log e \right) e^e - 0\]
\[ \Rightarrow I = e^e\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
If f is an integrable function, show that
Prove that:
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
\[\int\limits_2^3 e^{- x} dx\]
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.