English

Π ∫ 0 / 2 Cos X ( 2 + Sin X ) ( 1 + Sin X ) D X Equals,Log ( 2 3 ) ,Log ( 3 2 ),Log ( 3 4 ),Log ( 4 3 ) - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

Options

  • \[\log\left( \frac{2}{3} \right)\]
  • \[\log\left( \frac{3}{2} \right)\]
  • \[\log\left( \frac{3}{4} \right)\]
  • \[\log\left( \frac{4}{3} \right)\]
MCQ

Solution

\[\log\left( \frac{4}{3} \right)\]

\[Let\, I = \int_0^\frac{\pi}{2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} d x\]
\[\text{Let} \sin x , \text{then} \cos x\ dx = dt\]
\[When\ x = 0, t = 0, x = \frac{\pi}{2}, t = 1\]
\[\text{Therefore the integral becomes}\]
\[I = \int_0^1 \frac{dt}{\left( 2 + t \right)\left( 1 + t \right)}\]
\[ = \int_0^1 \left[ \frac{- 1}{2 + t} + \frac{1}{1 + t} \right] dt\]
\[ = \left[ - \log\left( 2 + t \right) + \log\left( 1 + t \right) \right]_0^1 \]
\[ = \left[ \log\left( 1 + t \right) - \log\left( 2 + t \right) \right]_0^1 \]
\[ = \log2 - \log3 - \log1 + \log2\]
\[ = \log\frac{4}{3}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - MCQ [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
MCQ | Q 8 | Page 117

RELATED QUESTIONS

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_4^9 \frac{\sqrt{x}}{\left( 30 - x^{3/2} \right)^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 


If `f` is an integrable function such that f(2a − x) = f(x), then prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 2 \int\limits_0^a f\left( x \right) dx\]

 


\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

\[\int\limits_0^2 x\left[ x \right] dx .\]

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_0^1 \tan^{- 1} x dx\]


\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]


\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_0^4 x dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Evaluate the following using properties of definite integral:

`int_(- pi/4)^(pi/4) x^3 cos^3 x  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×