Advertisements
Advertisements
Question
Options
- \[\log\left( \frac{2}{3} \right)\]
- \[\log\left( \frac{3}{2} \right)\]
- \[\log\left( \frac{3}{4} \right)\]
- \[\log\left( \frac{4}{3} \right)\]
Solution
\[Let\, I = \int_0^\frac{\pi}{2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} d x\]
\[\text{Let} \sin x , \text{then} \cos x\ dx = dt\]
\[When\ x = 0, t = 0, x = \frac{\pi}{2}, t = 1\]
\[\text{Therefore the integral becomes}\]
\[I = \int_0^1 \frac{dt}{\left( 2 + t \right)\left( 1 + t \right)}\]
\[ = \int_0^1 \left[ \frac{- 1}{2 + t} + \frac{1}{1 + t} \right] dt\]
\[ = \left[ - \log\left( 2 + t \right) + \log\left( 1 + t \right) \right]_0^1 \]
\[ = \left[ \log\left( 1 + t \right) - \log\left( 2 + t \right) \right]_0^1 \]
\[ = \log2 - \log3 - \log1 + \log2\]
\[ = \log\frac{4}{3}\]
APPEARS IN
RELATED QUESTIONS
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^4 x dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.