Advertisements
Advertisements
Question
\[\int\limits_0^1 \cos^{- 1} x dx\]
Solution
\[\int_0^1 \cos^{- 1} x d x\]
\[ = \int_0^1 \left( \cos^{- 1} x \times 1 \right) d x\]
\[ = \left[ \cos^{- 1} x x \right]_0^1 - \int_0^1 \frac{- x}{\sqrt{1 - x^2}}dx\]
\[ = \left[ x \cos^{- 1} x \right]_0^1 - \frac{2}{2} \left[ \sqrt{1 - x^2} \right]_0^1 \]
\[ = 0 + 1\]
\[ = 1\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Evaluate each of the following integral:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Evaluate the following:
`Γ (9/2)`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
If n > 0, then Γ(n) is