English

3 ∫ 1 ( X 2 + 3 X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]

Sum

Solution

\[\text{Here }a = 1, b = 3, f\left( x \right) = x^2 + 3x, h = \frac{3 - 1}{n} = \frac{2}{n}\]

Therefore,

\[ \int_1^3 \left( x^2 + 3x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) + . . . . . . . . . . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]

\[ = \lim_{h \to 0} h\left[ f\left( 1 \right) + f\left( 1 + h \right) + . . . . . . . . . . + f\left( 1 + \left( n - 1 \right)h \right) \right]\]

\[ = \lim_{h \to 0} h\left[ 1 + 3 + \left( 1 + h \right)^2 + 3\left( 1 + h \right) + \left( 1 + 2h \right)^2 + 3\left( 1 + 2h \right) + . . . . . . . . . + \left( \left( n - 1 \right)h \right)^2 + 3\left( \left( n - 1 \right)h \right) \right]\]

\[ = \lim_{h \to 0} h\left[ n + h^2 \left( 1^2 + 2^2 + . . . . . . . . . . . . . . \left( n - 1 \right)^2 \right) + 2h\left( 1 + 2 + . . . . . . . . . . . . \left( n - 1 \right) \right) + 3n + 3h\left( 1 + 2 + . . . . . . . . . . . . \left( n - 1 \right) \right) \right]\]

\[ = \lim_{h \to 0} h\left[ 4n + h^2 \frac{n\left( n - 1 \right)\left( 2n - 1 \right)}{6} + 5h\frac{n\left( n - 1 \right)}{2} \right]\]

\[ = \lim_{n \to 0 } \left[ 8 + \frac{4}{3}\left( 1 - \frac{1}{n} \right)\left( 2 - \frac{1}{n} \right) + 10\left( 1 - \frac{1}{n} \right) \right]\]

\[ = 8 + \frac{8}{3} + 10\]

\[ = \frac{62}{3}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Revision Exercise [Page 123]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Revision Exercise | Q 67 | Page 123

RELATED QUESTIONS

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_0^{\pi/4} \sec x dx\]

Evaluate the following definite integrals:

\[\int_0^\frac{\pi}{2} x^2 \sin\ x\ dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


\[\int\limits_0^{15} \left[ x^2 \right] dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Evaluate the following using properties of definite integral:

`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x)  "d"x`


Choose the correct alternative:

`Γ(3/2)`


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×