Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\frac{\pi}{3} \frac{\cos x}{3 + 4 \sin x} d x . \]
\[Let\ \sin\ x\ = t . Then, \cos\ x\ dx\ = dt\]
\[When\ x = 0, t = 0\ and\ x\ = \frac{\pi}{3}, t = \frac{\sqrt{3}}{2}\]
\[ \therefore I = \int_0^\frac{\pi}{3} \frac{\cos x}{3 + 4\sin x} d x\]
\[ = \int_0^\frac{\sqrt{3}}{2} \frac{1}{3 + 4t} d t\]
\[ = \frac{1}{4} \left[ \log \left( 3 + 4t \right) \right]_0^\frac{\sqrt{3}}{2} \]
\[ = \frac{1}{4}\left( \log \left( 3 + 2\sqrt{3} \right) - \log 3 \right)\]
\[ = \frac{1}{4} \log \left( \frac{3 + 2\sqrt{3}}{3} \right)\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
If f(2a − x) = −f(x), prove that
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is