Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} d x . \]
\[Let\ 2x + 1 = u\]
\[ \Rightarrow x = \frac{u - 1}{2}\]
\[ \Rightarrow dx = \frac{du}{2}\]
\[ \therefore I = \int\frac{\left( \frac{u - 1}{2} \right)^2 + \frac{u - 1}{2}}{\sqrt{u}} \frac{du}{2}\]
\[ \Rightarrow I = \frac{1}{8}\int\frac{u^2 + 1 - 2u + 2u - 2}{\sqrt{u}} du\]
\[ = \frac{1}{8}\int\frac{\left( u^2 - 1 \right)}{\sqrt{u}} du\]
\[ = \frac{1}{8}\int\left( u^\frac{3}{2} - u^{- \frac{1}{2}} \right) du\]
\[ = \frac{1}{8}\left[ \frac{2 u^\frac{5}{2}}{5} - \frac{2 u^\frac{1}{2}}{1} \right]\]
\[ = \frac{1}{8} \left[ \frac{2 \left( 2x + 1 \right)^\frac{5}{2}}{5} - \frac{2 \left( 2x + 1 \right)^\frac{1}{2}}{1} \right]_1^4 \]
\[ = \frac{1}{8}\left[ \frac{2}{5} \times 243 - 6 - \frac{2}{5} \times 9\sqrt{3} + 2\sqrt{3} \right]\]
\[ \Rightarrow I = \frac{1}{8}\left[ \frac{456}{5} - \frac{8\sqrt{3}}{5} \right]\]
\[ \Rightarrow I = \frac{57 - \sqrt{3}}{5}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Evaluate each of the following integral:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
`int_0^(2a)f(x)dx`
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Evaluate the following:
`Γ (9/2)`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.