Advertisements
Advertisements
Question
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Solution
\[\int_0^1 co t^{- 1} \left( 1 - x + x^2 \right) d x\]
\[ = \int_0^1 co t^{- 1} \left[ x\left( x - 1 \right) + 1 \right] d x\]
\[ = \int_0^1 co t^{- 1} \left[ \frac{\left( x\left( x - 1 \right) + 1 \right)}{x - \left( x - 1 \right)} \right] d x\]
\[ = \int_0^1 co t^{- 1} x - co t^{- 1} \left( x - 1 \right) dx\]
\[ = \left[ xco t^{- 1} x \right]_0^1 + \int_0^1 \frac{x}{1 + x^2}dx - \left[ \left( x - 1 \right)co t^{- 1} \left( x - 1 \right) \right]_0^1 - \int_0^1 \frac{\left( x - 1 \right)}{1 + \left( x - 1 \right)^2}dx\]
\[ = \left[ xco t^{- 1} x \right]_0^1 + \frac{1}{2} \left[ \log\left( 1 + x^2 \right) \right]_0^1 - \left[ \left( x - 1 \right)co t^{- 1} \left( x - 1 \right) \right]_0^1 - \frac{1}{2} \left[ \log\left( 1 + \left( 1 - x \right)^2 \right) \right]_0^1 \]
\[ = \frac{\pi}{4} - \frac{1}{2}\log2 + \frac{\pi}{4} - \frac{1}{2}\log2\]
\[ = \frac{\pi}{2} - \log2\]
APPEARS IN
RELATED QUESTIONS
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
Evaluate each of the following integral:
Write the coefficient a, b, c of which the value of the integral
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is