Advertisements
Advertisements
Question
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
Solution
\[\int_0^\frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) d x\]
\[Let x = \tan\theta,\text{ then }dx = \sec^2 \theta d\theta\]
\[\text{When, }x \to 0 ; \theta \to 0\]
\[\text{And }x \to \frac{1}{\sqrt{3}} ; \theta \to \frac{\pi}{6}\]
Therefore the integral becomes
\[ \int_0^\frac{\pi}{6} \tan^{- 1} \left( \frac{3\tan\theta - \tan^3 \theta}{1 - 3 \tan^2 \theta} \right)se c^2 \theta d\theta\]
\[ = \int_0^\frac{\pi}{6} \tan^{- 1} \left( \tan3\theta \right)se c^2 \theta d\theta\]
\[ = 3 \int_0^\frac{\pi}{6} \theta se c^2 \theta d\theta\]
\[ = 3 \left[ \theta \tan\theta \right]_0^\frac{\pi}{6} - 3 \int_0^\frac{\pi}{6} \tan\theta d\theta\]
\[ = 3 \left[ \theta \tan\theta \right]_0^\frac{\pi}{6} - 3 \left[ - \log\left( \cos\theta \right) \right]_0^\frac{\pi}{6} \]
\[\]
\[ = 3\left( \frac{\pi}{6} \times \frac{1}{\sqrt{3}} - 0 \right) + 3\left[ \log\frac{\sqrt{3}}{2} \right]\]
\[ = \frac{\pi}{2\sqrt{3}} + 3\log\frac{\sqrt{3}}{2}\]
\[ = \frac{\pi}{2\sqrt{3}} - \frac{3}{2}\log\frac{4}{3}\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`