English

Π / 2 ∫ 0 1 1 + Tan X D X is Equal to ,π 4,π 3,π 2, π - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to

Options

  • \[\frac{ \pi}{4}\]
  • \[\frac{\pi}{3}\]
  • \[\frac{\pi}{2}\]
  •  π

MCQ

Solution

\[\frac{\pi}{4}\]

\[Let\, I = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan x} d x ...............(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan\left( \frac{\pi}{2} - x \right)} d x \]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + cot x} d x ................(2)\]
\[\text{Adding (1) and (2) we get}\]
\[2I = \int_0^\frac{\pi}{2} \left[ \frac{1}{1 + \tan x} + \frac{1}{1 + cotx} \right] d x\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{\left( 1 + cotx \right) + \left( 1 + \tan x \right)}{\left( 1 + \tan x \right)\left( 1 + cotx \right)} \right] d x\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{2 + \tan x + \cot x}{1 + \tan x + cotx + \tan x \cot x} \right] d x\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{2 + \tan x + \cot x}{2 + \tan x + \cot x} \right] d x\]
\[ = \int_0^\frac{\pi}{2} dx\]
\[ = \left[ x \right]_0^\frac{\pi}{2} = \frac{\pi}{2}\]
\[Hence\, I = \frac{\pi}{4}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - MCQ [Page 118]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
MCQ | Q 19 | Page 118

RELATED QUESTIONS

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ x\ dx\]

\[\int\limits_{\pi/2}^\pi e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int\limits_0^{\pi/2} x^2 \sin\ x\ dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 


\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]

If `f` is an integrable function such that f(2a − x) = f(x), then prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 2 \int\limits_0^a f\left( x \right) dx\]

 


If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_0^2 x\left[ x \right] dx .\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]


\[\int\limits_0^{15} \left[ x^2 \right] dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


\[\int\limits_2^3 e^{- x} dx\]


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`


Choose the correct alternative:

Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×