Advertisements
Advertisements
Question
Options
- \[\frac{ \pi}{4}\]
- \[\frac{\pi}{3}\]
- \[\frac{\pi}{2}\]
π
Solution
\[Let\, I = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan x} d x ...............(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan\left( \frac{\pi}{2} - x \right)} d x \]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + cot x} d x ................(2)\]
\[\text{Adding (1) and (2) we get}\]
\[2I = \int_0^\frac{\pi}{2} \left[ \frac{1}{1 + \tan x} + \frac{1}{1 + cotx} \right] d x\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{\left( 1 + cotx \right) + \left( 1 + \tan x \right)}{\left( 1 + \tan x \right)\left( 1 + cotx \right)} \right] d x\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{2 + \tan x + \cot x}{1 + \tan x + cotx + \tan x \cot x} \right] d x\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{2 + \tan x + \cot x}{2 + \tan x + \cot x} \right] d x\]
\[ = \int_0^\frac{\pi}{2} dx\]
\[ = \left[ x \right]_0^\frac{\pi}{2} = \frac{\pi}{2}\]
\[Hence\, I = \frac{\pi}{4}\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If f(x) is a continuous function defined on [−a, a], then prove that
Evaluate each of the following integral:
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_2^3 e^{- x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is