Advertisements
Advertisements
Question
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
Options
1
e − 1
0
− 1
Solution
e − 1
\[Let\, I = \int_0^\frac{\pi}{2} \cos x\ e^{\sin x}\ d x\]
\[Let\ \sin x = t, then\ \cos x dx = dt\]
\[When\ x = 0, t = 0\ and\ x = \frac{\pi}{2}, t = 1\]
\[\text{Therefore the integral becomes}\]
\[I = \int_0^1 e^t dt\]
\[ = \left[ e^t \right]_0^1 \]
\[ = e - 1\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
`int x^3/(x + 1)` is equal to ______.