Advertisements
Advertisements
Question
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
Solution
We have,
\[\left| x^2 - 2x \right| = \begin{cases}- \left( x^2 - 2x \right),& 1 \leq x \leq 2\\ x^2 - 2x,& 2 \leq x \leq 3\end{cases}\]
\[ \therefore \int_1^3 \left| x^2 - 2x \right| d x\]
\[ = \int_1^2 - \left( x^2 - 2x \right) dx + \int_2^3 \left( x^2 - 2x \right) dx\]
\[ = \left[ - \frac{x^3}{3} + x^2 \right]_1^2 + \left[ \frac{x^3}{3} - x^2 \right]_2^3 \]
\[ = \frac{- 8}{3} + 4 + \frac{1}{3} - 1 + 9 - 9 - \frac{8}{3} + 4\]
= 2
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Evaluate the following integral:
Prove that:
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_2^3 e^{- x} dx\]
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.