English

3 ∫ 1 ∣ ∣ X 2 − 2 X ∣ ∣ D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]

Sum

Solution

We have,

\[\left| x^2 - 2x \right| = \begin{cases}- \left( x^2 - 2x \right),& 1 \leq x \leq 2\\ x^2 - 2x,& 2 \leq x \leq 3\end{cases}\]

\[ \therefore \int_1^3 \left| x^2 - 2x \right| d x\]
\[ = \int_1^2 - \left( x^2 - 2x \right) dx + \int_2^3 \left( x^2 - 2x \right) dx\]

\[ = \left[ - \frac{x^3}{3} + x^2 \right]_1^2 + \left[ \frac{x^3}{3} - x^2 \right]_2^3 \]

\[ = \frac{- 8}{3} + 4 + \frac{1}{3} - 1 + 9 - 9 - \frac{8}{3} + 4\]

= 2

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Revision Exercise [Page 122]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Revision Exercise | Q 30 | Page 122

RELATED QUESTIONS

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_0^\pi \left( \sin^2 \frac{x}{2} - \cos^2 \frac{x}{2} \right) dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} + \sqrt[4]{9 - x}} dx\]

\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_2^3 x^2 dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]

\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


\[\int\limits_2^3 e^{- x} dx\]


Evaluate the following using properties of definite integral:

`int_0^1 x/((1 - x)^(3/4))  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×