Advertisements
Advertisements
Question
Solution
\[\text{Let I }=\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]
\[= \int_\frac{1}{3}^1 \frac{\left[ x^3 \left( \frac{x}{x^3} - 1 \right) \right]^\frac{1}{3}}{x^4}dx\]
\[ = \int_\frac{1}{3}^1 \frac{x \left( \frac{1}{x^2} - 1 \right)^\frac{1}{3}}{x^4}dx\]
\[ = \int_\frac{1}{3}^1 \frac{\left( \frac{1}{x^2} - 1 \right)^\frac{1}{3}}{x^3}dx\]
Put
\[\therefore - \frac{2}{x^3}dx = dz\]
\[ \Rightarrow \frac{dx}{x^3} = - \frac{dz}{2}\]
When
When
\[\therefore I = - \frac{1}{2} \int_8^0 z^\frac{1}{3} dz\]
\[ = \left.- \frac{1}{2} \times \frac{z^\frac{4}{3}}{\frac{4}{3}}\right|_8^0 \]
\[ = - \frac{3}{8}\left[ 0 - \left( 8 \right)^\frac{4}{3} \right]\]
\[ = - \frac{3}{8} \times \left( - 16 \right)\]
\[ = 6\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If f is an integrable function, show that
Evaluate each of the following integral:
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following:
`Γ (9/2)`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
`Γ(3/2)`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
Find: `int logx/(1 + log x)^2 dx`