Advertisements
Advertisements
Question
Solution
\[Let I = \int_0^\pi x \sin x \cos^4 x d x ................(1)\]
\[ = \int_0^\pi \left( \pi - x \right) \sin\left( \pi - x \right) \cos^4 \left( \pi - x \right) d x\]
\[ = \int_0^\pi \left( \pi - x \right) \sin x \cos^4 x dx ..................(2) \]
\[\text{Adding (1) and (2) we get}\]
\[2I = \int_0^\pi \left( x + \pi - x \right) \sin x \cos^4 x\ dx \]
\[ = \pi \int_0^\pi \sin x \cos^4 x\ d x \]
\[ Let\ \cos x = t, \text{Then }- sinx \ dx = dt, \]
\[ \text{When} x = 0, t = 1, x = \pi, t = - 1\]
\[\text{Therefore}, 2I = - \pi \int_1^{- 1} t^4 dt\]
\[ = \pi \int_{- 1}^1 t^4 dt\]
\[ = \pi \left[ \frac{t^5}{5} \right]_{- 1}^1 \]
\[ = \frac{\pi}{5} + \frac{\pi}{5}\]
\[ = \frac{2\pi}{5}\]
\[\text{Hence } I = \frac{\pi}{5}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Choose the correct alternative:
If n > 0, then Γ(n) is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: