Advertisements
Advertisements
Question
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Sum
Solution
`int_1^2 (x - 1)/x^2 "d"x = int_1^2 (x/x^2 - 1/x^2) "d"x`
= `int_1^2 (1/x - x^-2) "d"x`
= `int_1^2 1/x "d"x - int_1^2 x^-2 "d"x`
= `[log|x|]_1^2 - [((x^(2 + 1))/(-2 + 1))]^2`
= `{log|2| - log|1|} - {1/x}_1^2`
= `[log 2 - 0] + [1/2 - 1/1]`
= `log 2 + [(1 - 2)/2]`
= `log 2 - 1/2`
= `1/2 [2 log 2 - 1]`
shaalaa.com
Definite Integrals
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]
\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]
\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]
\[\int_0^1 | x\sin \pi x | dx\]
\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]
\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]
\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]
\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.