Advertisements
Advertisements
Question
Solution
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here }a = 1, b = 4, f\left( x \right) = 3 x^2 + 2x, h = \frac{4 - 1}{n} = \frac{3}{n}\]
Therefore,
\[I = \int_1^4 \left( 3 x^2 + 2x \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 1 \right) + f\left( 1 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left( 1 + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 3 . 1^2 + 2 \times 1 \right) + \left( 3 \left( 1 + h \right)^2 + 2\left( 1 + h \right) \right) + . . . . . . . . . . . . . . . + \left\{ 3 \left( 1 + \left( n - 1 \right)h \right)^2 + 2\left( 1 + \left( n - 1 \right)h \right) \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ 3\left\{ 1^2 + \left( 1 + h \right)^2 + \left( 1 + 2h \right)^2 + . . . . . . . . . . . + \left( 1 + \left( n - 1 \right)h \right)^2 \right\} + 2\left\{ 1 + \left( 1 + h \right) + . . . . . . . . . . + \left( 1 + \left( n - 1 \right)h \right) \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ 3n + 3 h^2 \left\{ 1^2 + 2^2 + 3^2 . . . . . . . . . + \left( n - 1 \right)^2 \right\} + 6h\left\{ 1 + 2 + . . . . . . . . . \left( n - 1 \right)h \right\} + 2n + 2h\left\{ 1 + 2 + . . . . . . . . . . + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ 5n + 3 h^2 \frac{n\left( n - 1 \right)\left( 2n - 1 \right)}{6} + 8h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{3}{n}\left[ 5n + \frac{9\left( n - 1 \right)\left( 2n - 1 \right)}{2n} + 12n - 12 \right]\]
\[ = \lim_{n \to \infty} 3\left[ 17 - \frac{12}{n} + \frac{9}{2}\left( 1 - \frac{1}{n} \right)\left( 2 - \frac{1}{n} \right) \right]\]
\[ = 51 + 27\]
\[ = 78\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If f(x) is a continuous function defined on [−a, a], then prove that
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
Find: `int logx/(1 + log x)^2 dx`