Advertisements
Advertisements
Question
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
Solution
L.H.S. = `int (2x - 1)/(2x + 3) "d"x`
⇒ `int (1 - 4/(2x + 3)) "d"x` .....[Dividing the numerator by the denominator]
⇒ `int 1 * "d"x - 4 int 1/(2x + 3) "d"x`
⇒ `int 1 * "d"x - 4/2 int 1/(x + 3/2) "d"x`
⇒ `int 1 * "d"x - 2 int 1/(x + 3/2) "d"x`
⇒ `x - 2 log |x + 3/2| + "C"`
⇒ `x - 2 log |(2x + 3)/2| + "C"`
⇒ `x - log|((2x + 3)/2)^2| + "C"` ....[∵ n log m = log mn]
⇒ `x - log |(2x + 3)^2| - log 2^2 + "C"`
⇒ `x - log |(2x + 3)^2| + "C"_1`
⇒ R.H.S. ......[Where C1 = C – log 22]
L.H.S. = R.H.S.
Hence proved.
APPEARS IN
RELATED QUESTIONS
Write the coefficient a, b, c of which the value of the integral
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.