Advertisements
Advertisements
Question
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
Solution
\[\int_0^\frac{\pi}{3} \frac{\cos x}{3 + 4\sin x} d x\]
\[Let, \sin x = t \Rightarrow \cos x dx = dt\]
\[\text{When, }\sin x \to 0 ; t \to 0\]
\[\text{And }\sin x \to \frac{\pi}{3} ; t \to \frac{\sqrt{3}}{2}\]
\[ = \int_0^\frac{\sqrt{3}}{2} \frac{dt}{3 + 4t}\]
\[ = \frac{1}{4}\log \left[ 3 + 4t \right]_0^\frac{\sqrt{3}}{2} \]
\[ = \frac{1}{4}\log\left[ \log\left( 3 + 2\sqrt{3} \right) - \log\left( 3 + 0 \right) \right]\]
\[ = \frac{1}{4}\log\left[ \log\left( 2\sqrt{3} + 3 \right) - \log\left( 3 \right) \right]\]
\[ = \frac{1}{4}\left( \log\frac{2\sqrt{3} + 3}{3} \right)\]
APPEARS IN
RELATED QUESTIONS
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Find `int sqrt(10 - 4x + 4x^2) "d"x`
`int x^3/(x + 1)` is equal to ______.