Advertisements
Advertisements
Question
Solution
\[Let\, I = \int_{- 2}^1 \frac{\left| x \right|}{x} d x\]
\[\text{We have}, \]
\[\left| x \right| = \begin{cases}x&,& 0 \leq x \leq 1\\ - x&,& - 2 \leq x < 0\end{cases}\]
\[ \therefore \frac{\left| x \right|}{x} = \begin{cases}1&,& 0 \leq x \leq 1\\ - 1&,& - 2 \leq x < 0\end{cases}\]
\[\text{Therefore}, \]
\[I = \int_{- 2}^0 - 1dx + \int_0^1 1 dx\]
\[ = - \left[ x \right]_{- 2}^0 + \left[ x \right]_0^1 \]
\[ = 0 - 2 + 1 - 0\]
\[ = - 1\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
Γ(n) is
Choose the correct alternative:
Γ(1) is
Choose the correct alternative:
`Γ(3/2)`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: