English

Evaluate Each of the Following Integral: ∫ 2 π 0 Log ( Sec X + Tan X ) D X - Mathematics

Advertisements
Advertisements

Question

Evaluate each of the following integral:

02πlog(secx+tanx)dx

 

Sum

Solution

Let I =02πlog(secx+tanx)dx         ...........(1)

Then,

I=02πlog[sec(2πx)+tan(2πx)]dx...............[0af(x)dx=0af(ax)dx]
=02πlog(secxtanx)dx.....................(2)

Adding (1) and (2), we get

2I=02π[log(secx+tanx)+log(secxtanx)]dx
2I=02πlog(sec2xtan2x)dx
2I=02πlog1dx.................(1+tan2x=sec2x)
2I=0......................(log1=0)
I=0

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.4 [Page 61]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.4 | Q 2 | Page 61
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.