Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\frac{\pi}{6} \cos^{- 3} 2\theta \sin\ 2\theta\ d\ \theta . Then, \]
\[I = \int_0^\frac{\pi}{6} \frac{\sin 2\theta}{\cos^3 2\theta} d \theta\]
\[Let\ \cos 2\theta = t . Then, - 2 \sin 2\theta\ d\theta = dt\]
\[When\ \theta = 0, t = 1\ and\ \theta = \frac{\pi}{6}, t = \frac{1}{2}\]
\[ \therefore I = \frac{- 1}{2} \int_1^\frac{1}{2} \frac{dt}{t^3}\]
\[ \Rightarrow I = \frac{1}{2} \left[ \frac{1}{2 t^2} \right]_1^\frac{1}{2} \]
\[ \Rightarrow I = \frac{1}{2}\left( 2 - \frac{1}{2} \right)\]
\[ \Rightarrow I = \frac{3}{4}\]
APPEARS IN
RELATED QUESTIONS
If f(2a − x) = −f(x), prove that
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: