Advertisements
Advertisements
Question
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
Options
- \[9 \left( \frac{\pi}{2} \right)^9\]
- \[10 \left( \frac{\pi}{2} \right)^9\]
- \[\left( \frac{\pi}{2} \right)^9\]
- \[9 \left( \frac{\pi}{2} \right)^8\]
Solution
\[10 \left( \frac{\pi}{2} \right)^9 \]
\[\text{We have}, \]
\[ I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx\]
\[ = \left[ x^{10} \left( - \cos x \right) \right]_0^\frac{\pi}{2} - \int\limits_0^{\pi/2} \left[ 10 x^9 \int\sin x dx \right]dx\]
\[ = \left[ - x^{10} \cos x \right]_0^\frac{\pi}{2} - 10 \int\limits_0^{\pi/2} x^9 \left( - \cos x \right) dx\]
\[ = - \left[ x^{10} \cos x \right]_0^\frac{\pi}{2} + 10 \int\limits_0^{\pi/2} x^9 \cos x\ dx\]
\[ = - \left[ x^{10} \cos x \right]_0^\frac{\pi}{2} + 10 \left[ x^9 \sin x \right]_0^\frac{\pi}{2} - 10 \int\limits_0^{\pi/2} 9 x^8 \sin x dx\]
\[ = - \left[ \left( \frac{\pi}{2} \right)^{10} \times 0 - 0^{10} \cos 0 \right] + 10\left[ \left( \frac{\pi}{2} \right)^9 \times 1 - 0^9 \times 0 \right] - 90 \int\limits_0^{\pi/2} x^8 \sin x dx\]
\[ = 10\left[ \left( \frac{\pi}{2} \right)^9 \times 1 \right] - 90 I_8 \]
\[ = 10 \left( \frac{\pi}{2} \right)^9 - 90 I_8 \]
\[ \therefore I_{10} + 90 I_8 = 10 \left( \frac{\pi}{2} \right)^9\]
APPEARS IN
RELATED QUESTIONS
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
If f(x) is a continuous function defined on [−a, a], then prove that
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
Γ(n) is