English

If I 10 = π / 2 ∫ 0 X 10 Sin X D X , Then the Value of I10 + 90i8 Is,9 ( π 2 ) 9,10 ( π 2 ) 9,( π 2 ) 9,9 ( π 2 ) 8 - Mathematics

Advertisements
Advertisements

Question

If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\]  then the value of I10 + 90I8 is

 

Options

  • \[9 \left( \frac{\pi}{2} \right)^9\]
  • \[10 \left( \frac{\pi}{2} \right)^9\]
  • \[\left( \frac{\pi}{2} \right)^9\]
  • \[9 \left( \frac{\pi}{2} \right)^8\]
MCQ

Solution

\[10 \left( \frac{\pi}{2} \right)^9 \]
\[\text{We have}, \]
\[ I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx\]
\[ = \left[ x^{10} \left( - \cos x \right) \right]_0^\frac{\pi}{2} - \int\limits_0^{\pi/2} \left[ 10 x^9 \int\sin x dx \right]dx\]
\[ = \left[ - x^{10} \cos x \right]_0^\frac{\pi}{2} - 10 \int\limits_0^{\pi/2} x^9 \left( - \cos x \right) dx\]
\[ = - \left[ x^{10} \cos x \right]_0^\frac{\pi}{2} + 10 \int\limits_0^{\pi/2} x^9 \cos x\ dx\]
\[ = - \left[ x^{10} \cos x \right]_0^\frac{\pi}{2} + 10 \left[ x^9 \sin x \right]_0^\frac{\pi}{2} - 10 \int\limits_0^{\pi/2} 9 x^8 \sin x dx\]
\[ = - \left[ \left( \frac{\pi}{2} \right)^{10} \times 0 - 0^{10} \cos 0 \right] + 10\left[ \left( \frac{\pi}{2} \right)^9 \times 1 - 0^9 \times 0 \right] - 90 \int\limits_0^{\pi/2} x^8 \sin x dx\]
\[ = 10\left[ \left( \frac{\pi}{2} \right)^9 \times 1 \right] - 90 I_8 \]
\[ = 10 \left( \frac{\pi}{2} \right)^9 - 90 I_8 \]
\[ \therefore I_{10} + 90 I_8 = 10 \left( \frac{\pi}{2} \right)^9\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - MCQ [Page 119]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
MCQ | Q 27 | Page 119

RELATED QUESTIONS

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{- \frac{\pi}{2}}{\sqrt{\cos x \sin^2 x}}dx\]

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]

If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]


If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]

\[\int\limits_3^5 \left( 2 - x \right) dx\]

\[\int\limits_0^2 e^x dx\]

\[\int\limits_2^3 x^2 dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


\[\int\limits_0^\sqrt{2} \left[ x^2 \right] dx .\]

\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]


\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


Evaluate the following using properties of definite integral:

`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x)  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Choose the correct alternative:

Γ(n) is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×