English

1 ∫ 0 1 − X 2 X 4 + X 2 + 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]

Solution

\[Let\, I = \int\frac{1 - x^2}{x^4 + x^2 + 1} dx\]
\[ = - \int\frac{x^2 - 1}{x^4 + x^2 + 1} dx\]
\[ = - \int\frac{1 - \frac{1}{x^2}}{x^2 + 1 + \frac{1}{x^2}} dx\]
\[ = - \int\frac{1 - \frac{1}{x^2}}{x^2 + 2 + \frac{1}{x^2} - 1} dx\]
\[ = - \int\frac{1 - \frac{1}{x^2}}{\left( x + \frac{1}{x} \right)^2 - 1} dx\]
\[Let, x + \frac{1}{x} = t\]
\[ \Rightarrow \left( 1 - \frac{1}{x^2} \right)dx = dt\]
\[\text{Then integral becomes}, \]
\[I = - \int\frac{1}{t^2 - 1} dt\]
\[ = - \frac{1}{2}\log\left| \frac{t - 1}{t + 1} \right|\]
\[ = \frac{1}{2}\log\left| \frac{t + 1}{t - 1} \right|\]
\[ = \frac{1}{2}\log\left| \frac{x + \frac{1}{x} + 1}{x + \frac{1}{x} - 1} \right|\]
\[ = \frac{1}{2}\log\left| \frac{x^2 + x + 1}{x^2 - x + 1} \right|\]
\[i . e . , \int\frac{1 - x^2}{x^4 + x^2 + 1} dx = \frac{1}{2}\log\left| \frac{x^2 + x + 1}{x^2 - x + 1} \right|\]
\[ \Rightarrow \int_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx = \left[ \frac{1}{2}\log\left| \frac{x^2 + x + 1}{x^2 - x + 1} \right| \right]_0^1 \]
\[ = \frac{1}{2}\log 3\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.2 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.2 | Q 33 | Page 39

RELATED QUESTIONS

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

Evaluate the following integral:

\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]

\[\int\limits_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} + \sqrt[4]{9 - x}} dx\]

If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]


\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_0^\infty e^{- x} dx .\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals


\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\]  then the value of I10 + 90I8 is

 


\[\int\limits_0^1 \log\left( 1 + x \right) dx\]


\[\int\limits_0^{\pi/4} \tan^4 x dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Choose the correct alternative:

If n > 0, then Γ(n) is


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×