Advertisements
Advertisements
Question
Solution
\[Let\, I = \int\frac{1 - x^2}{x^4 + x^2 + 1} dx\]
\[ = - \int\frac{x^2 - 1}{x^4 + x^2 + 1} dx\]
\[ = - \int\frac{1 - \frac{1}{x^2}}{x^2 + 1 + \frac{1}{x^2}} dx\]
\[ = - \int\frac{1 - \frac{1}{x^2}}{x^2 + 2 + \frac{1}{x^2} - 1} dx\]
\[ = - \int\frac{1 - \frac{1}{x^2}}{\left( x + \frac{1}{x} \right)^2 - 1} dx\]
\[Let, x + \frac{1}{x} = t\]
\[ \Rightarrow \left( 1 - \frac{1}{x^2} \right)dx = dt\]
\[\text{Then integral becomes}, \]
\[I = - \int\frac{1}{t^2 - 1} dt\]
\[ = - \frac{1}{2}\log\left| \frac{t - 1}{t + 1} \right|\]
\[ = \frac{1}{2}\log\left| \frac{t + 1}{t - 1} \right|\]
\[ = \frac{1}{2}\log\left| \frac{x + \frac{1}{x} + 1}{x + \frac{1}{x} - 1} \right|\]
\[ = \frac{1}{2}\log\left| \frac{x^2 + x + 1}{x^2 - x + 1} \right|\]
\[i . e . , \int\frac{1 - x^2}{x^4 + x^2 + 1} dx = \frac{1}{2}\log\left| \frac{x^2 + x + 1}{x^2 - x + 1} \right|\]
\[ \Rightarrow \int_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx = \left[ \frac{1}{2}\log\left| \frac{x^2 + x + 1}{x^2 - x + 1} \right| \right]_0^1 \]
\[ = \frac{1}{2}\log 3\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Evaluate each of the following integral:
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
If n > 0, then Γ(n) is
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.