English

A ∫ 0 √ a 2 − X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

Solution

\[Let\ I = \int_0^a \sqrt{a^2 - x^2} d x . \]
\[Let\ x = a\ \sin\ t . Then\, dx = a\ \cos\ t\ dt\]
\[When\ x = 0, t = 0\ and\ x\ = a, t = \frac{\pi}{2}\]
\[ \therefore I = \int_0^a \sqrt{a^2 - x^2} d x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \sqrt{\left( a^2 - a^2 \sin^2 t \right)} a \cos\ t\ d\ t\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} a^2 \cos^2 t\ dt\]
\[ \Rightarrow I = a^2 \int_0^\frac{\pi}{2} \frac{1 + \cos 2t}{2} dt\]
\[ \Rightarrow I = \frac{a^2}{2} \left[ t + \frac{\sin 2t}{2} \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{a^2}{2}\left( \frac{\pi}{2} - 0 \right)\]
\[ \Rightarrow I = \frac{\pi^2}{4}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.2 [Page 38]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.2 | Q 10 | Page 38

RELATED QUESTIONS

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_1^4 f\left( x \right) dx, where\ f\left( x \right) = \begin{cases}4x + 3 & , & \text{if }1 \leq x \leq 2 \\3x + 5 & , & \text{if }2 \leq x \leq 4\end{cases}\]

 


Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx\]

 


\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]


\[\int\limits_3^5 \left( 2 - x \right) dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_a^b x\ dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is 

 


Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .


Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_0^{\pi/4} \tan^4 x dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


Find : `∫_a^b logx/x` dx


Using second fundamental theorem, evaluate the following:

`int_0^(pi/2) sqrt(1 + cos x)  "d"x`


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Choose the correct alternative:

`Γ(3/2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×