Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^1 \frac{2x}{1 + x^4} d x . \]
\[Let\ x^2 = t . Then, 2x\ dx\ = dt\]
\[When\ x = 0, t = 0\ and\ x\ = 1, t = 1\]
\[ \therefore I = \int_0^1 \frac{2x}{1 + x^4} d x\]
\[ \Rightarrow I = \int_0^1 \frac{1}{1 + t^2} d t\]
\[ \Rightarrow I = \left[ \tan^{- 1} t \right]_0^1 \]
\[ \Rightarrow I = \tan^{- 1} 1 - \tan^{- 1} 0\]
\[ \Rightarrow I = \frac{\pi}{4}\]
\[\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
If f(x) is a continuous function defined on [−a, a], then prove that
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: