Advertisements
Advertisements
Question
Solution
\[Let I = \int_2^3 \frac{x}{x^2 + 1} d x . Then, \]
\[I = \frac{1}{2} \int_2^3 \frac{2x}{x^2 + 1}\]
\[ \Rightarrow I = \frac{1}{2} \left[ \log \left( x^2 + 1 \right) \right]_2^3 \]
\[ \Rightarrow I = \frac{1}{2}\left( \log 10 - \log 5 \right)\]
\[ \Rightarrow I = \frac{1}{2}\log \frac{10}{5} \left[ \because \log a - \log b = \log \frac{a}{b} \right]\]
\[ \Rightarrow I = \frac{1}{2}\log 2\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals:
If f(2a − x) = −f(x), prove that
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.