Advertisements
Advertisements
Question
Options
1
e − 1
e + 1
0
Solution
1
\[\int_1^e \log x d x\]
\[ = \int_1^e \log x x^0 d x\]
\[ = \left[ x \log x \right]_1^e - \int_1^e \frac{1}{x}x d x\]
\[ = \left[ x \log x \right]_1^e - \left[ x \right]_1^e \]
\[ = \left( e - 0 \right) - \left( e - 1 \right)\]
\[ = e - e + 1\]
\[ = 1\]
APPEARS IN
RELATED QUESTIONS
If f(2a − x) = −f(x), prove that
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.