Advertisements
Advertisements
Question
Solution
\[Let\ x^2 = t\ . Then, 2x\ dx\ = dt\]
\[When\ x = 2, t = 4 and\ x\ = 4, t = 16 . \]
\[ \therefore I = \int_2^4 \frac{x}{x^2 + 1} d x\]
\[ \Rightarrow I = \int_4^{16} \frac{1}{2}\frac{dt}{t + 1}\]
\[ \Rightarrow I = \frac{1}{2} \left[ \log \left( t + 1 \right) \right]_4^{16} \]
\[ \Rightarrow I = \frac{1}{2} \log 17 - \frac{1}{2} \log 5\]
\[ \Rightarrow I = \frac{1}{2} \log \frac{17}{5}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals:
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
Find: `int logx/(1 + log x)^2 dx`