Advertisements
Advertisements
Question
\[\int\limits_0^{2\pi} \cos^7 x dx\]
Solution
\[Let, I = \int_0^{2\pi} \cos^7 x d x ..............(1)\]
\[ = \int_0^{2\pi} \cos^7 \left( 2\pi - x \right) d x\]
\[ = \int_0^{2\pi} - \cos^7 x d x\]
\[ \Rightarrow I = - \int_0^{2\pi} \cos^7 x d x ..............(2)\]
Adding (1) and (2) we get,
\[ 2I = \int_0^{2\pi} \cos^7 x d x - \int_0^{2\pi} \cos^7 x d x\]
\[ \Rightarrow 2I = 0\]
\[ \therefore I = 0\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
If f is an integrable function, show that
Evaluate each of the following integral:
Evaluate each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: