Advertisements
Advertisements
Question
If f is an integrable function, show that
Solution
\[I = \int_{- a}^a xf\left( x^2 \right) d x\]
\[Let\ g\left( x \right) = xf\left( x^2 \right)\]
\[ \Rightarrow g\left( - x \right) = \left( - x \right)f \left( - x \right)^2 = - \left( x \right)f\left( x^2 \right) = - g\left( x \right) i . e, g\left( x \right) \text{ is odd }\]
Therefore
\[I = 0 ...............\left[\text{Using }\int_{- a}^a g\left( x \right) d x\ = 0\text{ when g(x) is odd}\right]\]
APPEARS IN
RELATED QUESTIONS
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
If f(x) is a continuous function defined on [−a, a], then prove that
Prove that:
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
`int x^3/(x + 1)` is equal to ______.