Advertisements
Advertisements
प्रश्न
If f is an integrable function, show that
उत्तर
\[I = \int_{- a}^a xf\left( x^2 \right) d x\]
\[Let\ g\left( x \right) = xf\left( x^2 \right)\]
\[ \Rightarrow g\left( - x \right) = \left( - x \right)f \left( - x \right)^2 = - \left( x \right)f\left( x^2 \right) = - g\left( x \right) i . e, g\left( x \right) \text{ is odd }\]
Therefore
\[I = 0 ...............\left[\text{Using }\int_{- a}^a g\left( x \right) d x\ = 0\text{ when g(x) is odd}\right]\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.