हिंदी

Ed∫ex(1-x1+x2)2 dx is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.

विकल्प

  • `"e"^x/(1 + x^2) + "C"`

  • `(-"e"^x)/(1 + x^2) + "C"`

  • `"e"^x/(1 + x^2)^2 + "C"`

  • `(-"e"^x)/(1 + x^2)^2 + "C"`

MCQ
रिक्त स्थान भरें

उत्तर

`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to `"e"^x/(1 + x^2) + "C"`.

Explanation:

Let I = `int "e"^x ((1 - x)/(1 + x^2))^2  "d"x`

= `int "e"^x [(1 + x^2 - 2x)/(1 + x^2)^2]"d"x`

= `int "e"^x [((1 + x^2))/(1 + x^2)^2 - (2x)/(1 + x^2)^2]"d"x`

= `int "e"^x [1/(1 + x^2) - (2x)/(1 + x^2)^2]"d"x`

Here f(x) = `1/(1 + x^2)`

∴ f'(x) = `(-2x)/(1 + x^2)^2`

Using `int "e"^x ["f"(x) + "f'"(x)]"d"x = "e"^x * "f"(x) + "C"`

∴ I = `"e"^x * 1/(1 + x^2) + "C" = "e"^x/(1 + x^2) + "C"`

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise [पृष्ठ १६७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise | Q 51 | पृष्ठ १६७

संबंधित प्रश्न

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_1^e \frac{\log x}{x} dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]


\[\int_0^\pi \cos x\left| \cos x \right|dx\]

\[\int\limits_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} + \sqrt[4]{9 - x}} dx\]

\[\int\limits_0^7 \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{7} - x} dx\]

\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]

\[\int_0^1 | x\sin \pi x | dx\]

\[\int\limits_a^b e^x dx\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals

 


`int_0^(2a)f(x)dx`


\[\int\limits_0^1 \tan^{- 1} x dx\]


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Choose the correct alternative:

Γ(n) is


Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×