Advertisements
Advertisements
प्रश्न
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
विकल्प
`"e"^x/(1 + x^2) + "C"`
`(-"e"^x)/(1 + x^2) + "C"`
`"e"^x/(1 + x^2)^2 + "C"`
`(-"e"^x)/(1 + x^2)^2 + "C"`
उत्तर
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to `"e"^x/(1 + x^2) + "C"`.
Explanation:
Let I = `int "e"^x ((1 - x)/(1 + x^2))^2 "d"x`
= `int "e"^x [(1 + x^2 - 2x)/(1 + x^2)^2]"d"x`
= `int "e"^x [((1 + x^2))/(1 + x^2)^2 - (2x)/(1 + x^2)^2]"d"x`
= `int "e"^x [1/(1 + x^2) - (2x)/(1 + x^2)^2]"d"x`
Here f(x) = `1/(1 + x^2)`
∴ f'(x) = `(-2x)/(1 + x^2)^2`
Using `int "e"^x ["f"(x) + "f'"(x)]"d"x = "e"^x * "f"(x) + "C"`
∴ I = `"e"^x * 1/(1 + x^2) + "C" = "e"^x/(1 + x^2) + "C"`
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
`int_0^(2a)f(x)dx`
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Choose the correct alternative:
Γ(n) is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`