हिंदी

A ∫ 0 X √ a 2 − X 2 a 2 + X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

उत्तर

\[Let\, I = \int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[Consider\, x^2 = a^2 \cos2\theta\]

\[ \Rightarrow 2x\ dx = - 2 a^2 \sin2\theta d\theta\]

\[ \Rightarrow x\ dx = - a^2 \sin2\theta d\theta\]

\[When\, x \to 0 ; \theta \to \frac{\pi}{4} and\ x \to a ; \theta \to 0\]

\[\text{Now, integral becomes}
, \]

\[I = \int_\frac{\pi}{4}^0 - a^2 \sin2\theta \sqrt{\frac{a^2 - a^2 \cos2\theta}{a^2 + a^2 \cos2\theta}} d\theta\]

\[ = \int_\frac{\pi}{4}^0 - a^2 \sin2\theta \tan\theta d\theta\]

\[ = a^2 \int_0^\frac{\pi}{4} 2 \sin\theta \cos\theta \frac{\sin\theta}{\cos\theta} d\theta\]

\[ = a^2 \int_0^\frac{\pi}{4} 2 \sin^2 \theta d\theta\]

\[ = a^2 \int_0^\frac{\pi}{4} \left[ 1 - \cos 2\theta \right] d\theta\]

\[ = a^2 \left[ \theta - \frac{\sin2\theta}{2} \right]_0^\frac{\pi}{4} \]

\[ = a^2 \left[ \frac{\pi}{4} - \frac{1}{2} \right]\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.2 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.2 | Q 54 | पृष्ठ ४०

संबंधित प्रश्न

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 


\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

\[\int\limits_0^2 x\sqrt{2 - x} dx\]

\[\int\limits_0^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

\[\int\limits_a^b \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} dx .\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 


\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Evaluate the following:

Γ(4)


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Find `int sqrt(10 - 4x + 4x^2)  "d"x`


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×