Advertisements
Advertisements
प्रश्न
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
विकल्प
- \[\frac{\pi^4}{2}\]
- \[\frac{\pi^4}{4}\]
0
none of these
उत्तर
0
\[\int_{- \pi}^\pi \sin^3 x \cos^2 x d x\]
\[ = \int_{- \pi}^\pi \sin x\left( 1 - \cos^2 x \right) \cos^2 x dx\]
\[Let\ \cos x = t, then - \sin x dx = dt, \]
\[When\, x = - \pi, t = - 1, x = \pi, t = - 1\]
\[\text{Therefore the integral becomes}\]
\[ \int_{- 1}^{- 1} - \left( 1 - t^2 \right) t^2 dt\]
\[ = 0\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_2^3 e^{- x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: