Advertisements
Advertisements
प्रश्न
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
उत्तर
Le I = `int_0^1 log x/((1 - x)^(3/4)) "d"x`
Using the property
`int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`
I = `int_0^1 ((1 - x))/[1 - (1 - x)]^(3/4) "d"x`
= `int_0^1 ((1 - x))/(x)^(3/4) "d"x`
= `int_0^1 (1 - x) (x)^((-3)/4) "d"x`
= `int_^1 (x^((-3)/4) - x^(1 - 3/4)) "d"x`
= `int_^1 (x^((-3)/4) - x^(1/4)) "d"x`
= `[(x^(-3/4 + 1))/(((-3)/4 + 1))]_0^1 - [x^(1/4 + 1)/((1/4 + 1))]_0^1`
= `[x^(1/4)/((1/4))]_0^1 - [x^(5/4)/((5/4))]_0^1`
= `4[x^(1/4)]_0^1 - 4/5 [x^(5/4)]_0^1`
= `4[1 - 0] - 4/5 [1 - 0]`
= `4 - 4/5`
= `(20 - 4)/5`
∴ I = `16/5`
APPEARS IN
संबंधित प्रश्न
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`