Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here }a = 0, b = 2, f\left( x \right) = e^x , h = \frac{2 - 0}{n} = \frac{2}{n}\]
Therefore,
\[I = \int_0^2 e^x d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 0 \right) + f\left( 0 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left\{ 0 + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ e^0 + e^h + e^{2h} + . . . . . . . + e^\left( n - 1 \right)h \right]\]
\[ = \lim_{h \to 0} h\left[ \frac{\left( e^h \right)^n - 1}{e^h - 1} \right]\]
\[ = \lim_{h \to 0} \left[ \frac{e^2 - 1}{\frac{e^h - 1}{h}} \right]\]
\[ = \frac{e^2 - 1}{1}\]
\[ = e^2 - 1\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate the following integral:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
Write the coefficient a, b, c of which the value of the integral
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`