Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{We have}, \]
\[I = \int\limits_0^{1 . 5} \left[ x \right] dx\]
\[ = \int_0^1 \left[ x \right] dx + \int_1^{1 . 5} \left[ x \right] dx\]
\[ = \int_0^1 \left( 0 \right) dx + \int_1^{1 . 5} \left( 1 \right)dx ................\left[\because \left[ x \right] = \begin{cases}0&& 0 \leq x < 1\\1&& 1 \leq x < 1 . 5\end{cases} \right]\]
\[ = 0 + \left[ x \right]_1^{1 . 5} \]
\[ = 1 . 5 - 1\]
\[ = 0 . 5\]
\[ = \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
If f(x) is a continuous function defined on [−a, a], then prove that
Evaluate each of the following integral:
Solve each of the following integral:
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
Γ(n) is
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`