Advertisements
Advertisements
प्रश्न
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`
उत्तर
The given definite integral = `int_(-1)^2|x(x - 1)(x - 2)|dx`
= `int_(-1)^0 |x(x - 1)(x - 2)|dx + int_0^1 |x(x - 1)(x - 2)|dx + int_1^2 |x(x - 1)(x - 2)|dx`
= `- int_(-1)^0 (x^3 - 3x^2 + 2x)dx + int_0^1 (x^3 - 3x^2 + 2x)dx - int_1^2 (x^3 - 3x^2 + 2x)dx`
= `- [x^4/4 - x^3 + x^2]_(-1)^0 + [x^4/4 - x^3 + x^2]_0^1 - [x^4/4 - x^3 + x^2]_1^2`
= `9/4 + 1/4 + 1/4 = 11/4`
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
Write the coefficient a, b, c of which the value of the integral
Evaluate :
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_2^3 e^{- x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Find `int sqrt(10 - 4x + 4x^2) "d"x`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.